TESS Highlights in Asteroseismology & Stellar Astrophysics: Latest News from Last Week's TASC5/KASC12

Conny Aerts, Leuven University, B

KULEUVEN With a little help from friends

KULEUVEN With a little help from friends

KU LEUVEN Why should you care about TASC?

KU LEUVEN Why should you care about TASC?

KULEUVEN Rotation? Convection? Mixing?

KU LEUVEN Asteroseismology to the rescue

Host star life is dictated by stellar interior, not by surface!

From C. Aerts, Physics Today, 2015

KU LEUVEN Asteroseismology to the rescue

Host star life is dictated by stellar interior, not by surface!

TESS covers HRD with uninterrupted high-precision data

From C. Aerts, Physics Today, 2015

KULEUVEN Starquakes Probe Stellar Interiors

Astounding how much physics is hidden in an FT of an uninterrupted high-precision light curve TASC-ers are artists in getting it out...

9

KU LEUVEN The Beauty of Asteroseismology

aster → star seismos → waves logos → discourse

Different waves penetrate to different depths inside the star

Don't call this stellar noise! **KU LEUVEN**

KULEUVEN Data processing is crucial

KU LEUVEN TESS: diversity is impressive

KU LEUVEN Regimes of wave frequencies

Aerts et al. (2019), ARAA, Vol. 57, in press

RiA via https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-091918-104359

 $M < 1 M_{\odot}$

Easy for large databases

 $1 M_{\odot} < M < 2 M_{\odot}$ $M > 2 M_{\odot}$

Unknowns for M above ~1.3 Msun: Mcore (r,t) & Dmix (r,t) & Ωrot (r,t)

 $M < 1 M_{\odot}$

 $1~M_{\odot}$ < M < $2~M_{\odot}$

 $M > 2 M_{\odot}$

+ classical pulsators (RR Lyr, Cepheids) Kolenberg + compact pulsators (sdB/WD) Charpinet, Montgomery, Zong, Vanderbosch

KU LEUVEN Exoplanets & Asteroseismology

KU LEUVEN TESS: short-P exoplanets

KU LEUVEN Host star oscillations & activity

Asteroseismic Modelling

Asteroseismic Modelling

KULEUVEN Scaling the Sun for galactic archeology

KU LEUVEN Interior Rotation of Stars

KULEUVEN A tribute to Kepler : Core Rotation

RiA via https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-091918-104359

KULEUVEN Addition of F stars with core rotation

Asteroseismic log g (cgs)

Aerts et al. (2019), ARAA, Vol. 57, in press

RiA via https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-091918-104359

Core/Envelope Rotation KU LEUVEN

KULEUVEN Core/Envelope Rotation

KU LEUVEN Critical assessment 2nd clump

RiA via https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-091918-104359 28

KULEUVEN Core/Envelope Rotation

KU LEUVEN (Near-Core boundary) mixing

KU LEUVEN Subgiants with mixed modes: ages ~10%

KU LEUVEN Coupling 3D hydro to 1D models

Asteroseismology of Solar-type Stars with 3D Stellar Modelling

Jørgensen, Zhou: better prediction of mode excitation, damping, vmax for velocities of radial modes; NRP? flux?

KU LEUVEN Nonlinear asteroseismology

Nonlinear oscillations

• The propagation of solar-like oscillations is typically described in terms of the linearized fluid equations

Fluid forces
$$\sim c_1 \left(\frac{\delta r}{r}\right) + c_2 \left(\frac{\delta r}{r}\right)^2 + c_3 \left(\frac{\delta r}{r}\right)^3 + \cdots$$

In linear theory, waves propagate without interacting with each other.

noniinea

• At order $(\delta r/r)^2$ have wave-wave interactions:

linear

directly excited parent wave

 Nonlinear effects can directly impact observables like mode surface amplitudes, linewidths, and frequencies.

Nonlinear wave interactions: so far ignored slide courtesy of Nevin Weinberg + talks by Guo, Zong, Vanderbosch

KU LEUVEN Nonlinear asteroseismology

Potential applications: - exploit observed amplitudes + frequencies - nonlinear excitation of daughter modes - nonlinear wave breaking & AM transport and many more...

Stello et al. (2016)

KULEUVEN And lots of posters I could not discuss...

SDSS-V Pathfinder: The APOGEE-2 View of TESS CVZs

- All-sky
- Multi-epoch
- OB stars
- RGB stars
- Planet hosts

SDSS-IV giving us a preview: **38,000** stars so far in CVZ

To be or not to be a binary

A Search for Asteroseismic Signals in Young Moving Groups and Substellar-Companion Hosts ZJ Zhang, Daniel Huber Michael O. U

-

KULEUVEN Handing over to my friends

TASC6/KASC13 - July 13-17th 2020 - Leuven, Belgium

